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Abstract
We develop a satisficing model of choice in which the available alternatives differ
in their inherent complexity. We assume—and experimentally validate—that com-
plexity leads to errors in the perception of alternatives’ values. The model yields
sharp predictions about the effect of complexity on choice probabilities, some of
which qualitatively contrast with those of maximization-based choice models. We
confirm the predictions of the satisficing model—and thus reject maximization—in
a novel data set with information on hundreds of millions of real-world chess moves
by highly experienced players. Looking beyond chess, our work offers a blueprint
for incorporating complexity at the level of individual objects into models of choice
and for detecting satisficing outside of the laboratory.
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1. Introduction

The goal of this paper is to better understand decision making when the relevant objects
are inherently complex. Insurance contracts, for example, might consist of tens or even
hundreds of clauses that jointly determine value. Durable goods can have dozens of relevant
attributes, and strategies in dynamic games sometimes include so many contingencies that
even enumerating them exceeds the limits of human cognition. A common thread in these
and many other examples is that the objects are so large and evaluating them requires so
many mental calculations that individuals may struggle to accurately assess objects’ value.
Our analysis begins by modeling the idea that complexity makes it harder to assess value.

Each alternative in our model is characterized by its value to the decision maker (DM) and
its inherent complexity. When assessing an alternative’s value, the DM only obtains a noisy
estimate, whose dispersion increases in the complexity of the object. As a consequence, the
DM’s perception of value is less accurate for objects that are more complex.1

We incorporate this notion of complexity into an empirically testable theory of choice.
Here, we build on Simon’s (1955; 1972) seminal work on bounded rationality and satisficing.
According to Simon, individuals may not consider all possible alternatives and pick the
best one, but examine a rather small number, making a choice as soon as they find an
alternative that they regard as satisfactory. In our model, the decision maker has in mind an
aspiration level that she wishes to exceed. She lists all available alternatives in some order
and sequentially evaluates them until she encounters one whose estimated value exceeds her
aspiration level. This is the alternative she chooses.
After developing the key predictions of our satisficing-with-evaluation-errors model, we

compare them to those of a class of maximization-based models. Following Manzini and
Mariotti (2014), we postulate a two-stage procedure that includes standard maximization as
a special case. In the first stage, the DM reduces the set of available alternatives by drawing a
consideration set. In the second stage, the DM evaluates all alternatives in the consideration
set, and chooses the one with the highest estimated value. We depart from Manzini and
Mariotti (2014) in assuming that object evaluations are noisy and depend on complexity.
Our main theoretical result establishes that satisficing and maximization-based models

yield qualitatively different predictions about the effect of object complexity on choice

1The term “complexity” is typically associated with features of the environment that increase the cognitive
costs of making decisions. Such costs may arise for multiple reasons. Here, we focus on the idea that individual
objects might be inherently complex and, therefore, difficult to evaluate. Object complexity, in turn, gives
rise to complexity at the choice-set level. We note, however, that decision problems may be complex without
individual alternatives being difficult to evaluate, e.g., when choice sets are large (Iyengar and Lepper 2000).
In Salant and Spenkuch (2022), we test for choice overload among chess players. After controlling for the
quality of available moves, there is no evidence to suggest that choice-set size adversely affects decision-making
in our setting.
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probabilities. Under satisficing, increasing the complexity of a high-value alternative decreases
the probability that the corresponding object is deemed satisfactory, which, in turn, increases
the choice probabilities of all other available alternatives. Maximization, however, predicts
that an increase in complexity reduces the choice probabilities of objects with weakly higher
values. The intuition behind this comparative static is that noisier evaluations increase the
probability that the respective object will be perceived as better than superior ones. The
theory thus yields a new, general empirical test that leverages object complexity to distinguish
between satisficing and maximization-based choice models.

As a proof of concept, we implement this test in the context of chess endgames. Chess is a
finite, two-player, zero-sum game with perfect information. Although it is theoretically trivial,
chess remains practically intractable. Evaluating individual moves often strains the bounds
of human cognition, which makes chess an ideal setting to leverage complexity in order to pit
satisficing against maximization.

In chess, every board configuration corresponds to a choice set in which the alternatives
are all available legal moves. By Zermelo’s Theorem (1913), any chess move is of one of three
types. A winning move allows the current player to force a win under subsequent optimal
play. A losing move enables her opponent to guarantee himself a win, whereas a drawing
move lets both players force a draw. While computing these types is generally infeasible in
the opening and middlegame phases, endgames with up to six pieces have been definitively
solved by modern computers. Unlike human players, we can therefore assign an unambiguous,
ordinal measure of value to virtually any endgame move.

Chess also admits natural proxies for object complexity. As in any dynamic game, assessing
the value of a chess move requires the DM to examine the ensuing subgame. Because larger
game trees are likely harder to evaluate than smaller ones, we posit that the complexity of
a particular move is closely linked to the size of the subgame, i.e., the number of decision
nodes. Although computational constraints prevent us from calculating the total number
of nodes in every relevant game tree, we can proxy for the size of the tree by determining
its “depth” and “width.” Our measure of subgame depth corresponds to what chess players
call depth to mate (DTM). It is a theoretical metric of how fast the dominant player can
force a checkmate when the losing player resists as long as possible. By width we mean the
number of moves that are available to the opponent directly after the current player makes a
particular choice. By construction, both depth and width are strongly correlated with the
number of nodes in the subgame.

In order to validate our complexity measures and to provide evidence on the link between
object complexity and evaluation errors, we conduct an online experiment with nearly four
thousand chess players. In the experiment, each participant is asked to assess the type of a
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particular move (i.e., winning, drawing, or losing) in twenty-five randomly chosen endgame
positions.2 We find that the accuracy of participants’ responses declines significantly with
moves’ depth and width. That is, more complex moves are more difficult to evaluate.
Our main empirical results relate object complexity to choice probabilities. Data on choice

behavior come from lichess.org, one of the three most popular internet chess servers. We
have information on the universe of moves in all rated games on the platform from January
2013 through August 2020.3 Our analysis focuses on choices in endgame positions by nearly
a quarter million highly experienced users. In total, we examine about 227 million choices
from sets with approximately 4.6 billion alternatives.
As predicted by the satisficing-with-evaluation-errors model, we find that, for winning

moves, higher complexity is associated with a lower probability of being chosen. For losing
moves the opposite holds.
Next, we directly pit satisficing against maximization. To this end, we ask how increasing

the complexity of one winning move affects the choice probabilities of other winning moves
in the same set. Under satisficing, these choice probabilities should increase, whereas they
should decrease if players are maximizing. Regardless of whether we rely on depth or width
to measure complexity, whether we consider only small choice sets, or restrict attention to
games with long time controls, the data are inconsistent with maximization.
This finding raises the question of how widespread departures from maximization are. Are

we rejecting the null hypothesis of maximization because some or because most of the DMs
in our data appear to be satisficing instead? To speak to this question, we go on to test the
null on the individual level. Focusing on players for whom we observe at least one thousand
choices, we statistically reject (at the 5%-significance level) maximization for more than 80%
of individuals.

Related Literature. The work in this paper speaks directly to the theoretical literature
on how complexity considerations affect outcomes in single- and multi-person environments.
This research usually conceives of complexity as affecting behavior through constraints on
agents’ computational abilities and memory (e.g., Neyman 1985; Rubinstein 1986; Abreu
and Rubinstein 1988; Kalai and Stanford 1988; Salant 2011; Wilson 2014; Jakobsen 2020). A
high-level takeaway is that computational constraints can significantly affect both individual
and strategic outcomes.
Our contribution relative to extant theoretical work is twofold. First, we propose and
2The instructions carefully defined each type of move, although this may not have been necessary given

the subject population. About 78% of participants indicated that they had already known about winning,
drawing, and losing moves before encountering our definitions.

3Rated games are consequential in the sense that their outcomes directly affect users’ strength ratings and
rankings on the site. Anecdotal evidence suggests players care intensely about their ratings.
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experimentally test a new notion of complexity. According to this notion, complexity manifests
at the level of individual alternatives and leads to errors in the perception of value—in line
with recent work on cognitive imprecision (see, e.g., Woodford 2020).4 Second, we derive
comparative static results relating object complexity to choice behavior in different models of
decision making.
In addition, our work complements a growing experimental literature on complexity and

satisficing (see, e.g., Huck and Weizsäcker 1999; Gabaix et al. 2006; Bossaerts and Murawski
2017; Oprea 2022). Rubinstein (2007, 2016) uses response times to distinguish instinctive
choices from those that require significant cognitive effort. Caplin et al. (2011) provide
evidence that individuals satisfice in choice environments in which evaluating each option
takes time and effort. Oprea (2020) develops a revealed-preference methodology to measure
the cost of complexity. He finds subjects are willing to pay significant amounts in order to
avoid tasks that are inherently complex. Enke and Graeber (2023) demonstrate that cognitive
uncertainty depends on the complexity of the experimental task, and that it can rationalize
seemingly distinct behavioral phenomena. Overall, laboratory experiments confirm the idea
that complexity can greatly affect decision making.
Outside of the laboratory, however, tests of fundamental decision-theoretic concepts remain

rare.5 As Chiappori et al. (2002) note, nonexperimental settings are often intractable, with
choice sets that need not be known in their entirety, or even be specified ex ante. Moreover,
theoretical predictions may hinge on subtle properties of utility functions, intricacies of
payoff structures, and individuals’ beliefs—all of which are typically unobserved by the
econometrician. As a result, we know little about how complexity affects decision making
outside of the laboratory; and we do not have empirical tests to detect satisficing in real-world
environments.
Chess endgames provide an almost ideal setting to study complexity and test for satisficing.

In addition to yielding observable variation in complexity and admitting an objective measure
of alternatives’ value, chess possesses at least three additional attractive features. First, the
rules of the game are known to players and there is virtually no uncertainty about primitives
such as choice sets. Second, data on chess games are abundant, affording us enough statistical

4Another relevant literature is on the drift-diffusion model. The emphasis in this model is on binary choice,
and errors arise because perceptions of the difference in alternatives’ values evolve stochastically. As the
difference in values decreases or as the amount of noise in the stochastic process increases, the binary choice
problem may be thought of as being more complex. See Gonçalves (2024) for a recent discussion.

5A related literature asks whether some of the basic tenets of game theory are consistent with observed
behavior in different real-world environments. Walker and Wooders (2001), Chiappori et al. (2002), Palacios-
Huerta (2003), and Hsu et al. (2007) all study minimax play in professional sports, while Spenkuch et al.
(2018) examine backward induction in sequential voting. On the whole, the evidence from these settings
corroborates theory more closely than one might have guessed based on an abundance of negative findings
from the laboratory (see, e.g., Camerer 2003 for a review).
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power to test even subtle theoretical predictions. Third, we study experienced players in a
familiar environment, thus minimizing the risk that our findings are due to an unfamiliar
setting or driven by learning.6

Our chief contribution relative to extant experimental work is threefold. First, we document
the importance of complexity and satisficing for decision making outside of the laboratory.
Second, we provide evidence to suggest that object complexity is a key driver of evaluation
errors. That is, we provide evidence on the mechanism through which complexity affects
choice behavior. Third, we develop a new empirical test that has the potential to distinguish
satisficing from maximization-based choice behavior in both experimental and observational
data sets. This test is not specific to chess.

2. Theory

Our analysis begins by developing the notion of object complexity. After incorporating this
notion into two leading choice models—satisficing and maximization—we establish that
these models yield qualitatively different comparative statics regarding the effect of object
complexity on choice probabilities.

2.1. Object Complexity

Let X be a finite grand set of alternatives. An object in X is characterized by a pair (v, σ),
where v denotes the value of the object and σ is its complexity. To fix ideas, complexity may
be interpreted as the size of the respective object, or the length of its description. The DM
does not know v, and she may or may not know σ.
When assessing an alternative’s value, the DM needs to contend with noise due to object

complexity. Her assessment may be affected by beliefs, memory, information, computational
constraints, etc. We abstract from these specifics and focus on the output of the evaluation
process. This is the relevant component for our analysis. We call each potential output a
score and the (non-degenerate) distribution of potential outputs a score distribution. One
useful way of thinking about the score distribution is as a summary of all possible “perceived
values” of the object after deliberation.
To demonstrate the richness and flexibility of our framework, here are a few examples of

natural evaluation processes that are accommodated by the analysis below.

Example 1 (Maximum Likelihood): The DM has no prior knowledge about v. She obtains
a signal and conducts maximum likelihood estimation to determine the most likely value of

6For conflicting evidence as to whether experience and skill in one strategic environment transfer to another
one, see Palacios-Huerta and Volij (2008, 2009), Wooders (2010), and Levitt et al. (2010, 2011).
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the object. The score then corresponds to the maximum likelihood estimate given the signal
realization. For example, if the signal is drawn from a normal distribution with mean v and
standard deviation σ, then the score is also distributed N (v, σ). If the DM takes “several looks”
at the object, i.e., obtains k i.i.d. draws from N(v, σ), then the score distribution becomes
N
(
v, σ√

k

)
.

Example 2 (Bayesian Updating): The DM has a prior belief about the value of the object,
which she updates based on the signal(s) she receives. The score corresponds to the mean of
her posterior. For example, suppose that the prior belief is given by N(v0, σ0) and the signal
is distributed N(v, σ). Then, given signal realization y, the score equals v0 +

σ2
0

σ2
0+σ

2 (y − v0),

and the score distribution is N
(
v0 +

σ2
0

σ2
0+σ

2 (v − v0), σ0σ√
σ2
0+σ

2

)
.

Example 3 (Partial Confidence): The DM is partially confident that the value of the object
is v0. She consults a supplementary source of information to obtain a potentially different
value y, and forms the score αv0 + (1− α)y, where α is her initial degree of confidence. The
score is then distributed according to the respective linear transformation of the distribution
of the supplemental information.

Let F and f denote the CDF and PDF associated with the score distribution, and let
µ = µ(v) be the mean score according to f . We assume that the score distribution has the
following three properties:

(i) Responsiveness: The mean score µ(v) increases in v. We allow µ(v) to differ from v

because we want to accommodate evaluation processes as in Examples 2 and 3.
(ii) Symmetry : The density f satisfies f(µ− ε) = f(µ+ ε) for any ε ∈ R. Symmetry says

that, for any magnitude, positive and negative deviations from the mean of the score
distribution are equally likely to occur.

(iii) Unimodality : The density f weakly increases to the left of µ. The essence of unimodality
is that tail scores are less likely than “about average” realizations.

In our theory, object complexity increases the amount of noise that the DM needs to
contend with in the evaluation process. It is, therefore, a property of the family of the score
distributions that are associated with different alternatives in X. We require that this family
satisfies:

Condition 1: For every two alternatives a and b in X with values va and vb and σa < σb,
the corresponding CDFs, Fa and Fb, satisfy for any ε > 0:

1. Fb(µ(vb)− ε)−Fa(µ(va)− ε) ≥ 0, with strict inequality whenever Fb(µ(vb)− ε) > 0; and
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2. Fb(µ(vb) + ε)− Fa(µ(va) + ε) ≤ 0, with strict inequality whenever Fb(µ(vb) + ε) < 1.7

Condition 1 is a single-crossing property. It states that if both score distributions were to be
demeaned, then their CDFs would cross exactly once at zero. An increase in object complexity
thus corresponds to a shift of probability mass from the center of the distribution to its tails.
Several well-known families of distributions satisfy responsiveness, symmetry, unimodality,

and Condition 1. A leading example is the family of normal distributions when, for every
object, the mean and standard deviation of the associated score distribution are increasing
functions of v and σ, respectively. Another example is the family of uniform distributions if,
for any alternative, the associated score is distributed on [µ(v)− σ, µ(v) + σ]. Other examples
include the Logistic and Laplace families with location parameters corresponding to objects’
values and scale parameters corresponding to their complexities.

2.2. Choice Behavior: Satisficing vs. Maximization

We consider two models that map scores into choice behavior. First, building on Simon (1955),
we incorporate object complexity into a satisficing procedure. In satisficing, the DM has in
mind an aspiration level T that she wishes to exceed. This aspiration level corresponds to
the minimal score that the DM deems satisfactory.8 When choosing from a set of alternatives
A ⊆ X, the DM first lists all objects in A in some random order. She then evaluates them
sequentially. Starting with the first alternative, the DM examines the current object in order
to obtain its score. The alternative is chosen if the score exceeds T . Otherwise, the DM
proceeds to the next object. The DM continues in this fashion until she makes a choice or
until she reaches the end of the list. In the latter case, the DM chooses the last alternative
she evaluated.9

We allow for any distribution of evaluation orders that assigns positive probability to all
orderings and satisfies value invariance. Value invariance means that if two orderings of
alternatives, O1 and O2, give rise to the same sequence of values, then the probabilities
assigned to O1 and O2 are the same.10

7Part 2 of Condition 1 is implied by symmetry. We include it so that the condition is self-contained.
8When the aspiration level T is a function of previous scores, the first (second) part of Theorem 1.A below

continues to hold for any alternative whose mean score exceeds the supremum (infimum) of aspiration levels.
9Our results continue to hold if the DM chooses any alternative with equal probability when reaching the

end of the list. Assuming, however, that the DM chooses the highest-score alternative when reaching the end
of the list makes satisficing closer to maximization and hence the distinction between the two models less
sharp. This is because choice probabilities, when stopping prior to the last alternative, follow the predictions
of satisficing, whereas choice probabilities when all alternatives are exhausted follow the predictions of
maximization. The likelihood of the latter event declines exponentially fast as the number of alternatives in
the set grows.

10Let O1 = (a1, . . . , an) and O2 = (b1, . . . , bn) with n = |A|. Value invariance requires that if vak
= vbk for

k = 1, . . . , n, then O1 and O2 are drawn with the same probability.
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The second model we consider incorporates object complexity into the maximization-from
consideration-sets procedure of Manzini and Mariotti (2014). In this model, the DM chooses
from a choice set A using a two-stage process. In the first stage, she draws a consideration set
S ⊆ A, with |S| ≥ 2, according to some probability distribution PA. In the second stage, the
DM evaluates all objects in S, after which she chooses the alternative with the highest score.
We require that the family of distributions {PA} satisfies a value-invariance property that

is analogous to the one for satisficing. Specifically, for any two choice sets A and B and any
two corresponding consideration sets SA and SB, we require that SA and SB are drawn with
the same probability, i.e., PA(SA) = PB(SB), whenever the composition of values in A and
SA is the same as that in B and SB, respectively.11 Note, value invariance is trivially satisfied
if PA(A) = 1 for every A ⊆ X. In this case, we obtain the standard random utility model.
Both satisficing and maximization induce random choice functions that assign to every

choice set A a probability distribution over the alternatives in A. Choice behavior is stochastic
because object evaluations are noisy and because either the evaluation order (in satisficing)
or the consideration set (in maximization) is random. Our main result, stated in Theorem 1
below, establishes how changes in object complexity affect choice probabilities in either model.
The key takeaway is that object complexity has qualitatively different effects, depending on
whether DMs rely on satisficing or maximization.

Theorem 1: Fix two alternatives a and b with the same value v and with σa < σb such that
Fb(T ) /∈ {0, 1}. Let A and B be two choice sets such that {a} = A−B and {b} = B − A.

Part A: Suppose the DM satisfices. If µ(v) > T , then the choice probability of a in A is
larger than the choice probability of b in B, and any other non-zero choice probability in A is
smaller than in B. If µ(v) < T , then the rankings of the choice probabilities reverse.

Part B: Suppose the DM uses a maximization-from-consideration-sets procedure. Then,
the choice probability of every alternative c ∈ A ∩ B with value vc ≥ v is weakly larger in
A than in B. It is larger if (i) there is a consideration set S ⊆ A such that {a, c} ( S with
PA(S) > 0, and (ii) the support of the score densities of a and c is the real line.

To develop intuition for how object complexity affects choice probabilities under satisficing,
consider the left panel in Figure 1. It depicts two normal score distributions—one for an
alternative with expected score above T , and another one for an alternative with expected
score below T . In this setup, higher object complexity directly corresponds to higher variance.
Hence, all else equal, an increase in the complexity of an alternative with expected score

11Let |v|A denote the number of alternatives with value v in A. Two sets A and B have the same composition
of values if, for every v ∈ R, |v|A= |v|B .
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Figure 1: Choice with Noisy Evaluations

(a) Satisficing

µ′ T µ
I

II

Score

Density

(b) Maximization

µa µc Score

Density

Notes: Figure provides graphical intuition for Parts A (left panel) and B (right panel) of Theorem 1.

above T leads to more probability mass in area I , which in turn implies that, conditional
on being examined by the DM, the corresponding object is chosen with lower probability. As
for the remaining alternatives, their choice probabilities do not change if they were examined
prior to the alternative that is now more complex. The choice probabilities of all subsequent
alternatives, however, increase because these probabilities must offset the decline in the choice
probability of the object that is now more complex.12

By contrast, Theorem 1.B implies that, under maximization from consideration sets, an
increase in the complexity of one object reduces the choice probabilities of alternatives with
weakly higher values. To illustrate the driving force behind this result in the context of a
simple example, we turn to the right panel in Figure 1. There are two alternatives, a and
c, with vc > va. Almost all the mass of their score distributions is concentrated in narrow
intervals. For an increase in the complexity of a to affect the choice probability of c, both
alternatives must be part of the DM’s consideration set. Given such a consideration set,
the DM would choose a only if its score exceeds that of c. Since higher object complexity
corresponds to more probability mass in the tails of the score distribution, an increase in the
complexity of a makes this event more likely.

Theorem 1 provides a theoretical foundation for a new empirical test that leverages object
complexity to distinguish between satisficing and maximization. In what follows, we implement
this test to detect satisficing in the context of chess.

12For an alternative with an expected score below T , an increase in object complexity leads to more
probability mass in area II , which means that the comparative statics reverse.
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3. Application to Chess

3.1. Model Primitives

In chess, the grand set of alternatives X includes all legal moves in all board positions, and a
choice set corresponds to the collection of all legal moves in a given position. By Zermelo’s
Theorem, starting from any given position, either White can force a win, Black can force a
win, or both sides can guarantee themselves a draw. It is therefore possible to associate every
move in any board position with the ultimate outcome of the game under subsequent optimal
play. A move that allows the DM to force a win yields the largest payoff W , whereas a move
that enables her opponent to do so produces the lowest payoff L. Moves that lead to draws
generate a payoff of L < D < W . Hence, for any move a, we have that va ∈ {W,D,L}.
Since assessing a move’s value requires the DM to examine contingencies in the ensu-

ing subgame, we equate the complexity of a given move with the number of subsequent
contingencies—or the size of the game tree following this move. Given that we empirically
analyze hundreds of millions of choices from sets with several billion alternatives, calculating
the exact size of every subgame in our data is computationally infeasible. We, therefore,
settle on two proxies: a subgame’s “depth” and “width.” By width, we mean the number of
moves that are available to the opponent directly after the current player chooses a particular
move.13 By depth, we refer to the number of moves until mate if the dominant player attempts
to win as quickly as possible, while her opponent resists as long as possible. The latter metric
assumes best-response play, and is commonly known as depth to mate (DTM).

We validate these complexity measures in Section 6, where we report results from an online
experiment with nearly four thousand chess players. In the experiment, each participant is
asked to assess the type of a particular move (i.e., winning, drawing, or losing) in twenty-five
randomly chosen endgame positions. The experimental results indicate that the accuracy of
participants’ responses declines significantly with moves’ depth and width, suggesting that
both are useful proxies of object complexity.

As for moves’ values, while it is theoretically possible to compute the value of any legal
move in any stage of a chess game, doing so in the opening and middlegame phases is
computationally infeasible. Our empirical analysis, therefore, focuses on endgame positions
with up to six pieces on the board, which have been definitively solved by computer algorithms.
These algorithms rely on backward-induction logic to determine the values of all legal moves
in every endgame position, which are then stored in so-called tablebases.14 For W - and

13Almost mechanically, width is positively correlated with the number of possible moves that are available
to the current player after the opponent moves, the number of moves available to the opponent after the
current player moves again, and so on.

14For additional details on the algorithmic analysis of endgame positions and tablebases, see Appendix B.
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L-moves, these algorithms also calculate DTM. For D-moves, however, there is no general
approach to even identify them by means other than elimination, which does not lend itself
to measuring subgame depth. We therefore refrain from quantifying depth for D-alternatives,
and restrict our empirical tests to W - and L-moves.

3.2. Predictions

In order to translate the comparative statics of the satisficing model into concrete predictions
for the case of chess, we need to specify players’ aspiration levels. We assume that the average
score associated with a winning move, µ(W ), exceeds the DM’s aspiration level, whereas the
average score of a losing move, µ(L), is below the threshold.

Assumption 1: The threshold T is between µ(L) and µ(W ).

In other words, if evaluations were not noisy, players would find W -moves acceptable but
reject L-alternatives.
Under this assumption, we have the following two testable implications of Theorem 1.

Prediction 1: If players satisfice, then, holding the values and complexities of all other
moves in the choice set fixed, an increase in the complexity of a W -move decreases the
frequency with which this move is chosen. For an L-move, however, an increase in complexity
leads to a higher choice frequency.

Prediction 2: Under satisficing, an increase in the complexity of one W -move increases
the choice frequency of all other W -moves in the choice set. Under maximization, however, an
increase in the complexity of a W -move decreases the choice frequency of all other W -moves.

The latter prediction directly pits satisficing against maximization.

4. Data Sources and Descriptive Statistics

In order to test Predictions 1 and 2, we introduce a new, large observational data set that
contains information on choice behavior in chess endgames.

4.1. Data Sources

The core of our data comes from lichess.org, one of the most popular online chess platforms.
Funded by donations, Lichess is ad free and allows anyone to play live chess games at no
cost through a high-quality graphical user interface (see Figure 2 for a screenshot of a typical
game). Although Lichess offers a choice between many different time limits, the majority of
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Figure 2: Screenshot of a Rated Game on Lichess

Notes: Figure shows a screenshot from a rated game between
registered users on lichess.org. The green squares highlight the
most recent move, i.e., pc4.

games that are hosted on the platform can be broadly classified as “speed chess.”15 Lichess
further distinguishes between casual and rated games. The latter determine player ratings and
are therefore only available to registered users. Since high ratings tend to be a source of pride
among chess players, Lichess has a strict policy against computer-assisted play. Enforcement
of this policy relies on a variety of methods, including community reporting of suspected
offenders and automatic detection algorithms.
We have data on the universe of rated games between human players from January 2013

through August 2020. The available information includes players’ usernames, ratings and
real-world titles (if any), the date and start time of the game, its outcome, as well as the
sequence and timing of moves. We can therefore reconstruct all choice sets that a player faced
as well as the moves she chose.
We complement these data with information on moves’ values and complexities. As explained

above, extant computer analyses have determined the values and, for W - and L-moves, the
DTM of essentially all legal moves in endgame positions with six of fewer pieces.16 We retrieve
this information by running several billion queries against the Syzygy and Nalimov tablebases
(Nalimov et al. 2000; Man 2013).17 To compute width, we construct for every legal endgame

15The three most popular time control formats on Lichess are Bullet, Blitz, and Rapid. In a 40-move Blitz
game, each player has about eight minutes to deliberate. The corresponding numbers for Bullet and Rapid
games are three and twenty-five, respectively. Some of our analyses restrict attention to games with Classical
and Correspondence time controls, which last longer and in which time pressure tends to be less of an issue.
We have also conducted robustness checks in which we directly control for time pressure. The results are
qualitatively equivalent to those below (cf. Appendix D).

16The only exceptions are positions with castling rights and positions in which a lone king faces five other
pieces. The former are extremely rare in endgames (< .01% of available legal moves in our data), while the
latter are uninteresting (because 98.8% of available moves are of type W ). Our empirical analysis excludes all
board positions for which information on DTM is not available.

17As a technical side note, the Syzygy tablebases do not contain information on DTM. In contrast to the
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move in the data the resulting board position and count the number of moves that would be
available to the opponent if the current player executed the respective move.
Our final sample contains nearly 227 million decision problems with a total of over 4.6

billion alternatives. There are five distinct sources of selection into this sample. First, because
we need information on alternatives’ values and depth, we restrict attention to board positions
with six or fewer pieces.
Second, we focus on choice sets that contain at least one W - and at least one D- or

L-move. We adopt this restriction because it enables us to test Predictions 1 and 2 without
changing samples. A disadvantage of this restriction is that the sets in our sample contain an
above-average share of W -moves.
The third and related source of selection pertains to how often different individuals reach

a winning position, i.e., an endgame position with at least one W -move. The strongest
players, for instance, may often mate their opponents before reaching the endgame stage.
Similarly, very weak players may rarely be in a position to win endgames and might thus
also be underrepresented in our sample. We address this issue in two ways. First, whenever
appropriate, we control for player fixed effects. Second, we reweight observations so that all
players receive equal weight in the analysis. The results below should hence be interpreted as
referring to a typical decision by the average player in our sample.
Fourth, to minimize the risk that our findings are due to an unfamiliar setting or a lack of

experience with similar decision problems, we exclude, for every player, the first one thousand
endgame moves from winning positions. This leaves us with approximately 237,000 highly
experienced DMs who are very familiar with the task at hand.
Finally, users on Lichess are not a random subset of all experienced chess players. In the

appendix, we address this potential source of concern by replicating our main results in an
independent data set covering a large number of chess games in international tournaments.
These data come from the online publication The Week in Chess (TWIC), which covers “all
the latest news and games from international chess.” The most important disadvantage of
this alternative data set is that there is significantly less variation in the skill of players,
and that it is several orders of magnitude smaller than the Lichess data. These limitations
notwithstanding, the TWIC data yield qualitatively similar conclusions (cf. Appendix D.4).18

Nalimov tables, they do, however, take into account the fifty-move stalemate rule. In rare instances, the
fifty-move rule matters for correctly determining whether one player can unilaterally invoke a draw. We,
therefore, retrieve information on values from the Syzygy database, while information on DTM comes from
Nalimov’s database. The commercially available Lomonosov tablebases contain information on values and
DTM for board configurations with up the seven pieces, but require about 140TB of storage. They are thus
too large to be usable in most computing environments.

18Out of the twenty point estimates in Appendix D.4 sixteen are statistically significant and have the same
sign as their counterparts in Tables 3 and 4 below. For the remaining four coefficients the 95%-confidence
intervals include both negative and positive values.
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Table 1: Summary Statistics

Percentile

Variable Mean SD 25% 50% 75% 95% N

A. Move Characteristics
Type:
W -Move 0.69 0.46 4,617,441,573
D-Move 0.23 0.42 4,617,441,573
L-Move 0.08 0.27 4,617,441,573

Depth:
W -Moves 25.89 17.88 13 23 33 59 3,457,878,398
L-Moves 30.35 13.46 22 28 36 50 296,522,573

Width:
W -Moves 6.66 5.01 3 5 8 18 3,457,878,398
D-Moves 6.33 5.55 3 4 8 18 863,040,602
L-Moves 8.95 6.16 4 7 13 20 296,522,573

B. Choice-Set Composition
Total Number of Legal Moves 20.58 10.35 13 20 28 38 226,955,095
Number of W -Moves 15.48 11.09 6 15 24 34 226,955,095
Number of D-Moves 3.81 4.30 1 2 5 13 226,955,095
Number of L-Moves 1.29 2.73 0 0 2 7 226,955,095

C. Outcomes
Mistakes:

Any Type of Error 0.06 0.24 226,955,095
Choose D-Move 0.05 0.23 226,955,095
Choose L-Move 0.01 0.08 226,955,095

Result of Game:
If Current Move is Mistake:
Win Game 0.31 0.46 13,052,773
Draw 0.49 0.50 13,052,773
Lose Game 0.19 0.40 13,052,773

If Choose W -Move:
Win Game 0.74 0.44 213,902,322
Draw 0.20 0.40 213,902,322
Lose Game 0.05 0.22 213,902,322

D. Timing
Time Left on Clock (in sec.) 72.35 192.87 8 22 69 296 212,295,223
Deliberation Time (in sec.) 1.66 3.07 0 1 2 5 212,249,738

E. Player Characteristics
Total Number of Endgame Moves 2,584 2,469 1,297 1,793 2,877 6,696 237,232
Average Rating 1,733 281 1,533 1,716 1,917 2,222 237,232
Real-World Title 0.01 0.10 237,232

Notes: Table displays summary statistics for selected variables in the Lichess data. Each observation in panel A corresponds
to a legal move, and observations in panels B–D correspond to decision problems. Panel E contains player-level information.
Observations are reweighted so that all players and all decision problems for a given player receive equal total weight. The
number of observations related to the timing of moves is smaller because the raw data do not include this information for games
that were played prior to April 2017.

4.2. A First Look at the Data

Table 1 displays summary statistics for select variables in the Lichess data. On average, 15.5
out of 20.6 available moves are W -moves; yet only about 6% of observed choices are mistakes
in the sense that a player chooses a D- or an L-move instead of a W -move. Mistakes thus
occur at about one quarter the rate one would expect if DMs were choosing at random. At
the same time, the raw data also imply that mistakes do occur with a certain regularity. They
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are not rare events. Moreover, mistakes are consequential. A player whose current move is
a mistake is about 43 percentage points (p.p.)—or roughly 58%—less likely to ultimately
win the game than one who chooses a W -move, while the probability of a loss more than
doubles.19

We next turn to the distribution of our complexity measures. The upper two panels in
Figure 3 display histograms for individual moves’ depth (left) and width (right). On average,
W -moves have a depth of about 25.9 and a width of 6.7. The corresponding numbers for
L-alternatives are 30.4 and 8.9, respectively. Important for our purposes, there is a great
amount of variation in depth and, to a somewhat lesser extent, width.

The lower two panels of Figure 3 plot the distribution of the minimal depth (left) and
minimal width (right) among W -moves at the choice-set level. From a theoretical perspective
minimal depth and width correspond to the lowest amount of complexity with which the DM
needs to contend in order to correctly identify at least one winning move. Empirically, both
measures are highly correlated with other summary statistics for the complexity of available
alternatives, such as the mean or median depth and width. Taking either measure at face
value, the data include choice sets in which evaluating at least one move is relatively easy,
others where accurately classifying any move likely exceeds the bounds of human cognition,
and a great range of intermediate cases.

Figure 4 plots the observed frequency of mistakes as a function of the minimal depth and
width among W -moves. Regardless of whether we rely on minimal depth or width—or other
low-dimensional summary measures—we find that either predicts mistakes. The left panel of
Figure 4 shows this based on the raw data, while the right panel reveals a similar relationship
after controlling for the number of W -, D-, and L-moves in the choice set.

One potential issue with relying on depth as a proxy for complexity is that players may
care about more than just winning. For instance, preferences may be lexicographic over the
outcome of the game and its duration. That is, players may prefer winning to drawing and
losing, but winning quickly might be better than winning slowly. If such a preference for
winning quickly exists and if players are able to identify the depth of individual moves, then
it is possible that high- and low-depth moves may differ not only in their complexity but also
in their instrumental value.

To rule out that this possibility drives our results, we follow a two-pronged approach. First,
we conduct robustness checks in which we test Predictions 1 and 2 for choice sets in which
the minimal depth among W -moves exceeds fifty (cf. Appendix D). While it is conceivable
that players rank winning moves according to depth to mate when some of them are simple,

19Mistakes do not always result in forgone wins because the player’s opponent may subsequently also make
a mistake. Similarly, due to potential future mistakes, choosing a W -move now does not guarantee a win.
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Figure 3: Distribution of Complexity Measures

(a) Depth, by Type of Move
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Notes: Panel (a) presents a histogram of moves’ depth, separately by type of move. Panel (b) does so
for moves’ width. Panels (c) and (d) respectively depict the distribution of the minimal depth and
width among all W -moves in the choice set.

Figure 4: Greater Object Complexity is Associated with More Mistakes

(a) Raw Data
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(b) Controlling for Set Composition
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Notes: Figure shows the relationship between the frequency of mistakes (y-axis) and the minimal depth and width among the
available W -moves (x-axis). Panel (a) does so based on the raw data, whereas a panel (b) presents estimates of the same
relationship after controlling for the composition of the choice set, i.e., a fixed effect for the combination of the number of
available W -, D-, and L-moves. As explained in the text, the DM is said to make a mistake when she chooses a D- or L-move
in the presence of a W -alternative. The graphs do not show confidence intervals because they are too small to be visually
apparent.
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Table 2: Object Complexity and Length of Subsequent Play

Number of Subsequent Moves

(1) (2) (3) (4) (5) (6)

Depth 0.343 0.121
(0.000) (0.002)

Width 0.758 –0.093 –0.081 0.002
(0.001) (0.001) (0.003) (0.003)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Depth No No Yes No No Yes

Type of Chosen Move W -Move W -Move W -Move L-Move L-Move L-Move

Mean of LHS Variable 15.647 15.647 15.647 13.288 13.288 13.288

R2 0.197 0.129 0.235 0.329 0.314 0.340

N 213,902,320 213,902,320 213,902,320 1,356,566 1,356,566 1,356,566

Notes: Entries are coefficients and standard errors from regressing the number of moves after the current one in the same game
on that move’s complexity, as proxied by its depth and width. All regressions control for player fixed effects. Other fixed effects
vary across columns. Since depth is only defined for W - and L-moves, the sample includes only decision problems in which the
DM chose a move of either type. Observations are reweighted so that all decision problems for a particular player and all players
receive equal weight. Standard errors are two-way clustered by player and Endgame, and are shown in parentheses.

it seems unlikely that they are able to do so when the available alternatives are all very
complex.

Second, and perhaps more importantly, we present a set of complementary results that
exploit variation in width conditional on depth. To appreciate why conditioning on depth
is helpful, consider Table 2. The table presents regression results that relate both of our
complexity measures to the actual length of subsequent play. Given the definition of depth,
the positive coefficient in column (1) verifies that subgames that should, in theory, take
longer do, on average, take longer.20 The coefficient in column (2) reveals that, for W -moves,
width is also positively correlated with length of play. The third column of Table 2, however,
demonstrates that the relationship between width and length of play reverses if we condition
on the depth of the move. Columns (4)–(6) show results from analogous regressions for
L-moves. Upon controlling for depth, there is almost no relationship between the width of
L-moves and the length of subsequent play. For W -moves, however, the partial correlation is
negative.

The reason for the negative conditional correlation goes back to the definition of depth.
Depth to mate is a metric of how quickly the dominant player can force checkmate when the
opponent resists as long as possible, i.e., if the opponent always picks the L-move with the
highest DTM. Choices, however, are noisy. Sometimes the losing player chooses a move that

20DTM may differ from the realized length of play for several reasons. For example, if the dominant player
succeeds in mating her opponent but does not take the shortest path to victory, then the total number of
subsequent moves may exceed the initial move’s DTM. If, however, the losing player resigns or does not hold
out as long as possible, then there will be fewer subsequent moves than implied by DTM.
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allows for a quicker mate, and the probability of (inadvertently) executing such a move is
larger when his choice set contains more alternatives. Thus, conditional on depth, higher-width
moves are associated with quicker wins.
We build on this observation to address the possibility that players have a preference for

winning quickly. While our preferred specifications rely on depth to measure complexity,
we present complementary results that exploit variation in complexity due to moves’ width
conditional on their depth. For the latter set of specifications, any bias arising from a desire
to win quickly would go in the opposite direction.

5. How Does Object Complexity Affect Choice Frequencies?

We now proceed to test Predictions 1 and 2. Prediction 1 relates moves’ complexity to the
frequency with which the respective moves are chosen, under the assumption that the DM
satisfices. The effect of complexity on own choice frequencies should be negative for W -moves
and positive for L-alternatives. Prediction 2 concerns the impact of one W -move’s complexity
on the choice frequencies of other W -moves in the choice set. The sign of this effect allows us
to distinguish between satisficing and maximization.

5.1. Tests of Prediction 1

To investigate the connection between object complexity and own choice frequencies, we
estimate the following econometric model separately for W - and L-moves:

(1) Choosea = β Complexitya + χp + φA\a + εa.

Here, Choosea is an indicator for whether player p facing choice set A executed move a,
Complexitya denotes the move’s depth, χp is a player fixed effect, and φA\a corresponds to a
fixed effect for the other moves in the same choice set. In constructing this fixed effect, we
assume that, in line with the theory, moves can be reduced to their types and complexity.
Since we do not measure depth for D-moves, φA\a conditions (only) on the vector of depth
values for W - and L-moves and the type composition of the choice set, i.e., the number of W -,
D-, and L-alternatives. By including φA\a, we aim to approximate the thought experiment in
which we vary the object complexity of one alternative, holding the values and complexity of
all other moves fixed.
As explained above, we complement the results based on this specification with robustness

checks that condition on moves’ depth and rely on their width as an alternative source of
variation in object complexity. In these regressions, Complexitya corresponds to the width of
alternative a and φA\a is additionally interacted with the depth of a.
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Table 3: Choice Frequencies as a Function of Object Complexity

Panel A: Based on Depth
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Depth (÷ 100) –0.775 0.014 –0.227 0.034
(0.002) (0.001) (0.003) (0.002)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 16.713 0.472 20.480 0.657

R2 0.494 0.232 0.663 0.232
N 3,457,878,398 296,522,573 398,856,135 111,905,262

Panel B: Based on Width
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Width (÷ 100) –0.335 0.008 –0.744 0.031
(0.002) (0.001) (0.003) (0.002)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 16.713 0.472 20.480 0.657

R2 0.555 0.284 0.693 0.284
N 3,457,878,398 296,522,573 398,856,135 111,905,262

Notes: Entries are coefficients and standard errors from estimating β in variants of eq. (1) by ordinary least squares. The
regressions in the upper panel use moves’ depth as a proxy for their inherent complexity, while those in the lower panel rely on
width. All estimates control for player fixed effects. The regressions in the upper panel additionally include fixed effect for the
combination of the number of W -, D-, and L-moves and the vector of depths of all other W - and L-moves in the same choice
set. The regressions in the lower panel interact that fixed effect with the respective move’s depth. The unit of observation in
each regression is an available W - or L-move. Observations are reweighted so that all moves of the same type in a particular
decision problem and all players receive equal weight. The sample in the first two columns in both panels includes all board
configurations in our data, whereas the last columns restrict attention to configurations for which the associated choice sets do
not contain D-moves. All estimates are scaled to correspond to the percentage-point change in choice probability associated
with a one-unit increase in the respective regressor. Standard errors are two-way clustered by player and game, and are shown
in parentheses.

The upper panel of Table 3 shows results from estimating the regression model in eq. (1)
using depth to measure complexity, while the lower panel implements our robustness checks
based on width. In the first two columns within each panel, we study W - and L-moves from
all board configurations. In the last two columns, we restrict attention to choice sets that
do not contain any D-moves. The assumption that the included fixed effects appropriately
control for the complexity of all other moves is most plausible in the latter set of specifications.
Regardless of which sample we consider and irrespective of whether we exploit variation
in depth or width conditional on depth, we find that individual W -moves are significantly
less likely to be chosen as object complexity increases. By contrast, the choice frequencies
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of L-moves increase in their complexity. The results in Table 3 are thus consistent with
Prediction 1.
Moreover, the point estimates are economically large. According to the coefficients in the

first column of each panel, a one standard deviation increase in the depth of a W -move is
associated with a decline in the same move’s choice frequency of about 13.9 p.p.; and a
standard deviation increase in width is associated with a 3.9 p.p. decrease in the frequency with
which the respective move is chosen. Our findings, therefore, suggest that object complexity
is an empirically important determinant of choice.

5.2. Tests of Prediction 2

To pit satisficing against maximization we restrict attention to W -moves and modify the
regression specification in eq. (1) by replacing the left-hand-side variable with an indicator
for whether the player chose a W -move other than a. In symbols:

(2) Choose Other W -Movea = γ Complexitya + χp + φA\a + ηa.

Table 4 presents results from estimating this model on different subsets of our data. The
results in cols. (1A) and (1B) show that, in the full sample, the complexity of one W -move is
positively correlated with the choice frequency of otherW -moves in the same set. The positive
point estimates in these columns are inconsistent with maximization from consideration sets.
The next two columns demonstrate that the coefficients’ sign remains unchanged when we

only consider choice sets that do not contain any D-moves, or when we exclude the simplest
W -move from each set. The remaining three columns restrict attention to settings that meet
one of the following criteria: (i) none of the available W -moves are easily recognizable as
good (because minimal depth exceeds fifty; cols. 4A and 4B), (ii) small choice sets (with
ten or fewer moves; cols. 5A and 5B), and (iii) long time controls (so that each player has,
in expectation, at least twenty-five minutes for deliberation per game; cols. 6A and 6B).
Although these are settings in which maximization might be a priori especially appealing,
the evidence continues to point to satisficing.
This finding raises the question of how widespread departures from maximization are. Are

we rejecting the null of maximization because a few or because most of the DMs in our data
are satisficing? To speak to this question, we test Prediction 2 at the individual level. Since
the theory requires us to hold fixed the type and complexity of all other available moves, our
individual-level tests focus on players for whom our sample contains at least one thousand
decisions. There are 61,337 such individuals.
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Figure 5: Testing Prediction 2 at the Player Level

(a) Player-Level Estimates of γ in Eq. (2)
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(b) CDF of p-values for Estimates in Panel (a)
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Notes: Figure presents player-level tests of Prediction 2. Panel (a) plots histograms of player-level estimates of γ in eq. (2),
restricting attention to the 61,337 players for whom we observe at least 1,000 decisions in our sample. Estimates are scaled to
be directly comparable to their counterparts in the first column of Table 4. Panel (b) shows the empirical CDF of the
one-sided p-values associated with the point estimates in panel (a) (i.e., H0 : γ ≤ 0). It also shows results from a
Kolmogorov-Smirnov test against the null hypothesis of a uniform distribution of p-values. All p-values account for clustering
across moves in the same game.

For every one of these players, we estimate the regression model in eq. (2). We then plot the
distribution of the resulting coefficients in the left panel of Figure 5. Irrespective of whether
we rely on depth or width conditional on depth to measure complexity, we obtain positive
point estimates for the vast majority of DMs.
The right panel of Figure 5 shows the empirical CDFs of the one-sided p-values for our

individual-level estimates. The relevant p-values are one-sided because the null hypothesis of
maximization from consideration sets implies that γ ≤ 0 (cf. Prediction 2). Under this null, the
distribution of p-values should first-order stochastically dominate the uniform distribution.21

This, however, is not what we observe. For either complexity measure the actual distribution
of p-values is itself first-order stochastically dominated by the uniform distribution, and a
Kolmogorov-Smirnov test rejects the limit case of uniformity at the 99%-confidence level.
Even if we relied on two-sided p-values, we would reject, at the 5%-significance level, the null
hypothesis of maximization from consideration sets for more than 80% of players.

6. Connecting Object Complexity and Evaluation Errors

The basic idea behind our approach is that higher object complexity leads to noisier perceptions
of value (cf. Condition 1). Noisier evaluations should in turn increase the frequency with

21That is, we should have Pr(p ≤ α | H0) ≤ α for all α ∈ [0, 1]. This claim follows from Definition 8.3.26
and Theorem 8.3.27 in Casella and Berger (2001). The intuition behind it is as follows. If γ = 0, then the
observed p-values should be uniformly distributed over the unit interval. If γ < 0, however, then we would
expect to see fewer small (one-sided) p-values and more large ones, implying first-order stochastic dominance.
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Figure 6: Screenshot of Experimental Task

Notes: Figure shows a screenshot from our experiment, in which subjects
are asked to identify the type of a particular move.

which DMs misclassify moves, e.g., identify a W -move as a D- or an L-move.22 To validate
that our complexity measures do, indeed, capture how difficult it is to correctly classify a
given move, we conducted an experiment with nearly four thousand online-chess players.

6.1. Experimental Design

The experiment took place on a custom-built website over the four-week period starting April
7, 2023. We recruited participants via targeted ads on social media and through forum posts
on two of the largest online chess platforms, lichess.org and chess.com. To ensure that we
were recruiting online-chess players, we required all participants to provide their Lichess and
Chess.com usernames, which our website verified in real time. Out of the 3,966 participants,
584 provided a Lichess username, 2,471 submitted a Chess.com username, and 911 subjects
provided both.

The experiment consisted of twenty-five rounds. In each round, participants were shown
a chess board with a randomly sampled endgame position in which one legal move was
highlighted. They were then asked to indicate whether the highlighted move is a winning,
drawing, or losing move—as in the example in Figure 6. Subjects had between five and
forty-five seconds to submit their answer, and they knew that moves of each type were a
priori equally likely to be shown.23 We settled on this experimental task because it allows us

22Noisier evaluations imply more classification errors whenever DMs classify an alternative as a W -move if
its score is high enough, as an L-move if its score is low enough, and as a D-move otherwise.

23The time limit was uniform i.i.d. across rounds.
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to relate moves’ complexity to the accuracy of participants’ evaluations. At the same time, it
resembles the kind of puzzles that are popular among chess players.
In order to present subjects with moves that they might realistically evaluate in a real-

world chess game, we extracted a random subset of 30,000 legal moves from a representative
set of board configurations in our observational data from Lichess.24 We then constructed
sampling probabilities so that participants could expect to see an equal number of W -, D-,
and L-moves, subject to depth being approximately uniformly distributed between zero and
fifty. Importantly, subjects were never asked whether they would choose any given move. Our
experimental design thus tests the idea that higher object complexity is associated with more
classification errors, independent of whichever choice procedure players may use.
We incentivized subjects by awarding one virtual lottery ticket for every move they correctly

evaluated. After the experiment, all lottery tickets were entered into a raffle for twenty $100
Amazon gift certificates. The median participant earned 15 tickets and spent about 9 minutes
on the experiment.25 For additional details on the experimental setup, see Appendix E.26

6.2. Experimental Results

Figure 7 plots the raw frequency of incorrect evaluations against moves’ complexity. In the
left panel we use depth to measure complexity, while the right panel uses width instead.
Since our analyses above rely on observational data from Lichess, we present results pooling
across all subjects and restricting attention to Lichess users only. For the latter, we reweight
observations so that the distribution of strength ratings among Lichess users in our experiment
approximates that in the real-world data.27

Consistent with the idea that object complexity injects noise into evaluations, Figure 7
shows that relatively simple moves are more likely to be correctly evaluated than more complex
ones. Reassuringly, we observe a similar, approximately linear and statistically significant

24The only constraint we imposed is that the depth and width of extracted moves do not exceed 50 and 18,
respectively. Both numbers correspond roughly to the 95th percentiles of the respective marginal distributions.

25About 20% of participants did not finish the experiment. The analysis below uses data from all
participants—regardless of the total number of evaluations they submitted—subject to passing basic attention
checks. Results are qualitatively and quantitatively similar if we exclude participants who did not complete
the experiment.

26The pre-registration for the experiment is available at https://osf.io/6zk9m. We designed the experi-
ment to test different hypotheses, including effects of time pressure and (lack of) gender differences. Below,
we focus on H1 in the pre-analysis plan, leaving tests of other, unrelated hypotheses for future work. The
empirical specifications that were preregistered correspond to columns (1A) and (2A) in Table 5 below. The
remaining columns in Table 5 demonstrate that the results are qualitatively robust to restricting the sample
to Lichess users and to limiting which types of comparisons identify the coefficient of interest.

27The Lichess users participating in the experiment have a strength rating that is nearly 150 points lower
than that of the (highly experienced) players in our real-world sample. The results would be slightly stronger
if we did not reweight observations to approximate the ratings distribution in the real-world data.
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Figure 7: Object Complexity Predicts Incorrect Evaluations

(a) Based on Depth
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(b) Based on Width
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Notes: Figure shows binscatter plots of the raw relationship between the frequency of incorrect move evaluations (y-axis) and
the respective moves’ complexity (x-axis). Panel (a) uses depth to measure complexity, whereas panel (b) relies on width. The
underlying data come from the experiment described in the text. When focusing on Lichess users only, observations are
reweighted to approximate the distribution of strength ratings in the observational choice data from Lichess that we use in
Sections 4–5. Error bars correspond to 95%-confidence intervals, accounting for two-way clustering by participant and move.

relationship for all participants and Lichess users only—though the latter do, on average,
better. We also observe that evaluation errors are more sensitive to moves’ depth than to
their width.28 Among all players, a one standard deviation increase in depth is associated
with a 9.0 p.p. increase in the rate of errors, while a standard deviation increase in width
is only associated with a 2.0 p.p. increase.29 Consistent with the results in Figure 4, this
suggests that depth might be a better proxy for object complexity than width.

Table 5 presents results from estimating variants of the following linear probability model:

(3) Incorrecta = κComplexitya + ψA + ξa,

where Incorrecta is an indicator for whether the subject made a mistake in classifying the
type of move a in endgame position A, Complexitya denotes the move’s complexity (i.e.,
depth or width), and ψA is a fixed effect for the board position, i.e., the exact configuration
of all pieces. By including ψA we account for general features of the board that might affect
subjects’ evaluations, such as the number, type and positioning of chess pieces. In our most
inclusive specification, we interact ψA with a fixed effect for the specific piece executing move

28In the right panel, excluding moves with a width of zero (i.e., moves that result in checkmate or stalemate)
would yield a slope estimate of 0.233 with a standard error of 0.046 for all users, and an estimate of 0.204
with a standard error of 0.060 for Lichess users.

29In the experimental data, the standard deviation of depth equals 14.4, while that of width is about 5.4.
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Table 5: Experimental Results

Panel A: All Online-Chess Players
Probability of Incorrectly Identifying Type of Move

(1A) (2A) (3A) (4A) (5A) (6A) (7A) (8A)

Depth (÷ 100) 0.622 0.987 1.067 0.969 1.053
(0.023) (0.042) (0.046) (0.043) (0.047)

Width (÷ 100) 0.367 0.573 0.471 0.548 0.380
(0.045) (0.087) (0.095) (0.099) (0.111)

Fixed Effects:
Board Position No No Yes No Yes No Yes No
Board Position × Piece No No No Yes No Yes No Yes

Mean of LHS Variable (%) 31.033 36.976 31.033 31.033 36.976 36.976 31.033 31.033

R2 0.038 0.002 0.139 0.176 0.125 0.165 0.139 0.176
N 58,470 87,060 58,470 58,470 87,060 87,060 58,470 58,470

Panel B: Lichess Users
Probability of Incorrectly Identifying Type of Move

(1B) (2B) (3B) (4B) (5B) (6B) (7B) (8B)

Depth (÷ 100) 0.603 0.829 0.851 0.825 0.850
(0.027) (0.059) (0.070) (0.060) (0.070)

Width (÷ 100) 0.329 0.358 0.334 0.144 0.026
(0.057) (0.112) (0.125) (0.132) (0.152)

Fixed Effects:
Board Position No No Yes No Yes No Yes No
Board Position × Piece No No No Yes No Yes No Yes

Mean of LHS Variable (%) 26.624 32.227 26.624 26.624 32.227 32.227 26.624 26.624

R2 0.043 0.002 0.212 0.263 0.193 0.254 0.212 0.263
N 22,382 33,422 22,382 22,382 33,422 33,422 22,382 22,382

Notes: Entries are coefficients and standard errors from estimating κ in variants of eq. (3) by ordinary least squares. The set of
included fixed effects varies across columns. The unit of observation is always a participant’s evaluation of a particular move.
There are differences in the number of observations across columns because depth is not defined for D-moves. The regressions
in the upper panel use data from all participants in our experiment, whereas those in the lower panel restrict attention to
registered users of Lichess. In the latter case, observations are reweighted to approximate the distribution of strength ratings
in the real-world Lichess data that we use in Sections 4 and 5. All estimates are scaled to correspond to the percentage-point
change in the probability of incorrectly identifying the type of a move associated with a one-unit increase in the respective
regressor. Standard errors are two-way clustered by participant and move, and are shown in parentheses.

a. In these regressions, all identifying variation comes from comparing different moves with
the same piece in the same board configuration. For example, in the context of Figure 6 we
might be comparing Re3 with Re7. The former is an L-move of depth 44, while the latter is
an L-move whose depth is 40.

The first two columns of Table 5 reproduce the evidence in Figure 7. The results in the next
four columns establish that the estimates are robust to controlling for the exact board position
and chess piece. If anything, including controls strengthens the relationship between moves’
complexity and errors in evaluation. The specifications in the last two columns of Table 5
show that either complexity measure is related to evaluation errors even after controlling
for the other one, although the point estimates for width are only statistically significant in
the pooled sample. Broadly summarizing, the experimental results support the fundamental
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idea behind our notion of object complexity: Moves that, according to our measures, are
inherently more complex are more difficult to evaluate.

7. Beyond Chess

Many objects that are of interest to economists are inherently complex. Our first contribution
is to propose a notion of object complexity and to incorporate it into choice theory.
We associate object complexity with the size of the respective object and postulate that

complexity induces noisier evaluations. Although we only validate the link between complexity
and the accuracy of subjective evaluations in the context of chess, there are many other
settings in which object complexity is likely relevant. For example, individuals may be
flummoxed by contracts that span tens of pages with dozens of contingencies. Policymakers
may struggle to evaluate long proposals with many clauses. Consumers may stumble when
choosing among durable goods that differ along multiple attributes. A common thread in
these and other examples is that the objects are large and are composed of smaller, more
basic components, which together determine value.
This observation suggests a potential mechanism for why object complexity leads to noisier

evaluations. Suppose that when evaluating alternatives, DMs break up large objects into
smaller components, evaluate (perhaps some of) them, and then sum all of the “micro
estimates” to form an overall assessment of value. If the micro estimates are subject to errors,
then the overall evaluation of the object will be noisier for alternatives that consist of more
components, i.e., larger objects.30

Thinking of complexity as the number of basic components is useful for measuring object
complexity across a variety of settings. Take contracts, for example. On a basic theoretical
level, a contract might be thought of as a set of clauses that map contingencies into actions and
responsibilities (Battigalli and Maggi 2002).31 Viewed through this lens, a natural measure
of complexity is the number of contingencies or conditional clauses that are contained
in the contract. Extracting conditional statements from text is a well-studied problem in
computational linguistics and can be done at scale.32 A more nuanced measure of contract
complexity might also take into account that some clauses are more difficult to comprehend

30Specifically, assume that the object consists of a collection of k components and that the value of each
component i is estimated with idiosyncratic noise according to a normal distribution N(vi, σi). Further
suppose that an object’s value, v, corresponds to the (weighted) sum of the values of the individual components.
If the DM samples each component once and sums the estimated values to obtain an estimate of v, then that
estimate is distributed according to the normal distribution N(

∑k
j=1 vj ,

√∑k
j=1σj

2). Thus, as the number of
components increases, overall evaluations become noisier.

31Similarly, a durable good might be thought of as a collection of attributes, and a policy proposal as a
collection of propositions.

32See, e.g., Honnibal et al. (2020), Manning et al. (2014), or Bird and Loper (2004) for general-purpose
natural language processing software. For a library specific to legal text, see Bommarito et al. (2021).
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than others, which suggests weighting by linguistic attributes like length, lexical sophistication,
density, and variability, or by syntactic difficulty.33 Regardless of how researchers define
a basic component in their application, we recommend that any particular measure be
experimentally validated—as we did in Section 6. For the case of contracts, Besliu (2022)
shows that participants in a carefully controlled laboratory experiment are more likely to
select a dominated health insurance plan when it features more contingencies.

Our second contribution is to examine how DMs cope when choosing from a set of complex
alternatives. We consider two leading mechanisms: satisficing and maximization. We develop
a new empirical test that relies on variation in object complexity to distinguish between both
mechanisms. Our data on endgame moves in chess are consistent with satisficing but not
maximization.

While chess provides an almost ideal “proof of concept,” our test is not specific to any
particular environment. Following the approach in this paper, it is possible to pit satisficing
against maximization in any setting that satisfies the following conditions. (i) Choices and
choice sets are observable. (ii) The available alternatives can be ranked according to their
value to the DM. (iii) It is possible to measure, or at least approximate, objects’ complexity.
If extended to other settings, the finding that many DMs satisfice might have important
theoretical and applied implications.

To illustrate, consider an online marketplace. If consumers are satisficing rather than fully
maximizing, then sellers have an incentive to influence the order in which products are being
considered. To the extent that the ordering of products on the screen affects the order of
consideration, we would expect sellers to compete for their products to be displayed more
prominently. Consistent with this prediction, the Federal Trade Commission (FTC) recently
alleged that Amazon.com extracts rents from third-party sellers by steering consumers towards
products that are promoted via pay-to-play advertisements. Consumers are allegedly harmed
because promoted products tend to be more expensive and of lower quality than similar items
that are displayed below them. Per the FTC, 70% of Amazon’s customers do not click past
the first page of search results (see FTC 2023).

Moving beyond the ordering of products on the screen, our findings suggest that sellers
also have an incentive to manipulate the complexity of product presentations. Suppose, for
instance, that consumers are only willing to make a purchase if the perceived quality of a
good exceeds their aspiration level, q̄. If consumers are satisificing, then the demand for
products whose true quality, q, exceeds (falls short of) q̄ decreases (increases) as consumers’

33All of these characteristics correlate with how hard it is to comprehend the respective text. They can be
quantified using tools from computational linguistics (see, e.g., Chen and Zechner 2011; Lu 2014; Kyle et al.
2017).
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evaluations of the respective goods become noisier. Sellers are, therefore, expected to simplify
the presentation of products with quality above q̄. By contrast, sellers should strategically
“complexify” the presentation of alternatives with quality below q̄. Similar incentives to leverage
object complexity are likely present in the design and presentation of policy proposals, in
developing financial products, and in various other settings.
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Appendix A: Proof of Theorem 1

Fix two alternatives a and b, and two choice sets A and B as in the statement of Theorem 1.

Proof of Theorem 1.A. Suppose µ(v) > T . Fix two orders of evaluation, OA for A and
OB for B, that are identical except for b substituting a in OB. By value invariance, the
probabilities of these two orders are identical. If a and b appear last in OA and OB respectively,
then the probability of reaching them is identical because OA and OB are identical prior to
reaching the last alternative. In this case, the two alternatives’ choice probabilities conditional
on reaching them are also identical because they are equal to 1.

Otherwise, the choice probability of a in OA is

Pr(DM did not stop prior to a)× Pr (y ≥ T )

where y is some score realization. The first component in this expression is identical to the
probability of not stopping prior to reaching b in OB because OB is identical to OA prior to
reaching b. The second component in this expression is equal to 1−Fa(T ). This component is
larger than 1− Fb(T ). This is because we have that (i) µ(v) > T and (ii) Fb(T ) > 0 implying
that Fb(T ) > Fa(T ) by Condition 1. Thus, the choice probability of a in OA is larger than
the choice probability of b in OB. Consequently, the choice probability of the alternative
appearing after a in OA is smaller than the choice probability of the same alternative in
OB, assuming they are positive, and is weakly smaller otherwise. Since this holds for any
order other than orders in which a and b appear last and all orders are drawn with positive
probability, the result follows.

The proof for µ(v) < T is analogous. Q.E.D.

Proof of Theorem 1.B. Fix in addition an alternative c as in the statement of Theorem
1.B. The choice probability of c in A is the sum of expressions of the form PA(S)P (c, S) where
PA(S) denotes the probability of drawing consideration set S and P (c, S) is the probability
that c is the highest-order statistic in S.

Consider the mapping M(S) = S − a+ b. This mapping is from the power set of A to the
power set of B. It is one-to-one and onto. By order invariance, PA(S) = PB(M(S)) for every
S ⊆ A. It therefore suffices to show that

(4) P (c, S)− P (c,M(S)) ≥ 0

for every S in order to establish the required ranking of choice probabilities. If a /∈ S, then
M(S) = S and inequality (4) holds.

Suppose a ∈ S. Because the PDFs and CDFs corresponding to alternatives in S and M(S)
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are identical other than for the alternatives a ∈ A and b ∈ B, we can write the difference
above as:

P (c, S)− P (c,M(S)) =

∫ ∞
−∞

 ∏
l /∈{a,b,c}

Fl(y)

 fc(y) (Fa(y)− Fb(y)) dy

=(i)

∫ ∞
−∞

P (y)G(y)dy =(ii)

∫ ∞
−∞

P (µ(v) + ε)G(µ(v) + ε)dε

=(iii)

∫ ∞
0

(P (µ(v) + ε)− P (µ(v)− ε))G(µ(v) + ε)dε.

Here, equality (i) follows from denoting P (y) =
(∏

l /∈{a,b,c} Fl(y)
)
fc(y) and G(y) = Fa(y)−

Fb(y), equality (ii) follows from substituting y with µ(v) + ε, and equality (iii) follows from
the fact that by symmetry:

G(µ(v)+ε) = 1−Fa(µ(v)−ε)−(1−Fb(µ(v)−ε)) = Fb(µ(v)−ε)−Fa(µ(v)−ε) = −G(µ(v)−ε).

Thus, to establish inequality (4), it suffices to show that the integrand in (iii) is non-negative.

Because b is more complex than a, we have that G(µ(v) + ε) ≥ 0 by Property 1. The
expression P (µ(v)+ε)−P (µ(v)−ε) is also non-negative because (i) fc(µ(v)+ε) ≥ fc(µ(v)−ε)
since fc is symmetric around its mean and increases up to its mean which is weakly larger
than the µ(v), and (ii) CDFs are weakly increasing functions. The first part of Theorem 1.B
follows.

For the second part, fix a consideration set S ⊆ A of size ≥ 3 that includes a and c and that
is drawn with positive probability. Suppose that the supports of fa and fc are the real line.
By Property 1, the support of fb is also the real line, and hence G(µ(v) + ε) > 0. To complete
the proof, it thus suffices to show that P (µ(v) + ε)−P (µ(v)− ε) > 0 on a non-empty interval
I of ε’s.

Let d /∈ {a, c} be some alternative in S. By unimodality and symmetry, the support of fd
is either an interval or the real line. In either case, Fd increases in some interval (dmin, dmax).
Let

I =


(dmin − µ(v), dmax − µ(v)) if dmin > µ(v)

(0,min{dmax − µ(v), µ(v)− dmin}) if dmin ≤ µ(v) < dmax

(µ(v)− dmax, µ(v)− dmin) otherwise.

Then, for every ε ∈ I, Fd(µ(v) + ε) > Fd(µ(v) − ε) implying that the product term in
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P (µ(v) + ε) is larger than in P (µ(v)− ε) and hence that P (µ(v) + ε)− P (µ(v)− ε) > 0.
Q.E.D.

Appendix B: Algorithmic Analysis of Chess Endgames

In Section 3, we note that chess endgames with up to six pieces have been definitely solved
by computer algorithms, and we provide a high-level description of how these algorithms
work. Below, we offer additional details.1

Retrograde analyses of endgame positions begin by constructing an exhaustive list of
all possible (up to symmetry) legal board configurations with three chess pieces.2 Every
configuration is examined, and the ones in which the player-to-move is in checkmate are
stored as “mated in 0.” Next, all configurations with the other side to move are evaluated. If
one of them can reach a configuration that has previously been determined to be “mated in 0”
by executing a legal move, then it is stored as “mate in 1.” To find the set of configurations
that are “mated in 2,” the algorithm looks for configurations from which all possible legal
moves lead to “mate in 1” configurations; and to determine configurations that are “mate
in 3,” it subsequently checks for configurations from which it is possible to directly reach
a configuration that is known to be “mated in 2.” Proceeding recursively, a configuration
is classified as “mated in l” if every legal move results in a configuration that is “mate in
w ≤ l − 1, with equality for at least one move. By contrast, a configuration is marked as
“mate in w” if it is possible to move to another one that is “mated in w − 1.” This procedure
continues until no further progress at classifying configurations is made, at which point all
remaining configurations with three chess pieces are designated as “drawn.” Essentially the
same algorithm is next applied to board configurations with four pieces, then five, and then
six.
The end result is a so-called tablebase in which board configurations are classified as either

“drawn,” “mated in l,” or “mate in w.” A particular move is said to be of type W with DTM
d if it results in a new board configuration that, with the other player to move, is known
to be “mated in d − 1.” Thus, the minimal DTM among all available W -moves from any
configuration that is “mate in w” is, by construction, equal to w. Similarly, a move is said to
be an L-move with DTM d if it leads to a configuration that is “mate in d− 1.” The maximal
DTM among all L-moves from any configuration that is “mated in l” equals l. Moves that
result in “drawn” configurations are classified as type D.
Figure B.1 provides a concrete example of the content of a tablebase. The left panel depicts

the board configuration that is being examined, with the data for each available legal move

1For the original academic work on this topic, see Thompson (1986).
2Configurations with two lone kings are automatically drawn.
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Appendix Figure B.1: Example of an Endgame Table

8 zzZzzZz1•TkzzZ
7 zZzzZzzZzzZz
6 5XQzZ3VrzZzzZz2–Un
5 zZzzZzzZz6šYPz
4 zzZzzZzzZzzZ
3 zZzzZzzZzzZz
2 zzZz1•TKzzZzzZ
1 zZzzZzzZzzZz

a b c d e f g h

Move Evaluation
Qc6 W in 19
Qa8 W in 21
Qa3 W in 47
Qa7 D
Qa5 D
Qa4 D
Qa2 D
Qa1 D
Qb5 D
Qd3 D
Qe2 D
Qf1 D

Move Evaluation
Qb7 D
ph6 L in 34
Qc4 L in 34
Qc8 L in 34
Ke2 L in 32
Ke3 L in 32
Kd3 L in 32
Qb6 L in 32
Ke1 L in 30
Kd1 L in 28
pg6 L in 28

Notes: Figure provides an example of the information in endgame tablebases. The left panel shows the
board configuration that is to be evaluated, assuming it is White’s turn to move. Yellow-colored squares
help visualize the set of available moves. The right panel shows the computer evaluation of each legal move,
drawing on the Nalimov endgame tables. The letters W , D, and L denote winning, drawing, and losing
moves from the perspective of the current player.

shown on the right. The assessment of a move consists of two components: its type (i.e., W ,
D, or L), and, for a W - or L-move, its DTM. In this particular example, Qc6 corresponds
to “W in 19,” which means that, if White moves the queen to c6, then White can force
checkmate in nineteen moves regardless of Black’s response.

Appendix C: Data Appendix

Our observational data on endgame moves come from lichess.org. Every month, Lichess
releases database extracts covering all rated chess games between two human players that
were hosted on its platform during the previous month. These extracts are made available
in the human-readable PGN format at https://database.lichess.org, and include basic
facts about each game (including players’ usernames and ratings, date and time of the game,
time controls, ultimate outcome, etc.), the exact sequence of moves, as well as, starting April
2017, the clock reading at the end of each move.
We downloaded and processed all extracts through August 2020, filtering on endgame

positions with six or fewer pieces. We then spent more than half a million CPU-hours querying
the Nalimov and Syzygy endgame tablebases for information on depth to mate (DTM) and
the type of each available legal move (i.e., W , D, or L) in these positions. The 6-men Syzygy
and Nalimov endgame databases are available at http://tablebase.sesse.net (Syzygy:
150GB; Nalimov: 1.2TB). Because Syzygy tablebases take into account the 50-move rule,
we rely on them to determine the type of each move, whereas information on DTM comes
from Nalimov’s database. The only board configurations with six or fewer pieces that are not
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covered in the latter are (i) ones in which a lone king faces five other pieces, and (ii) positions
with castling rights. The former are generally uninteresting because 98.8% of available legal
moves are of type W , and the latter are extremely rare in the Lichess data (< .01% of moves
in nontrivial endgame positions).
The sample for our main analysis restricts attention to decision problems in (i) board

positions with six or fewer pieces with (ii) available information on the types of all available
legal moves and the DTM of all available W - and L-moves, in which (iii) there are one or
more legal W -moves and at least one D- or L-alternative, (iv) excluding the first 1,000 such
decision problems for every user.

Appendix D: Robustness Checks

D.1. Restricting Attention to Board Positions with High Minimal DTM

In Appendix Tables AT.1–AT.2, we replicate our main results, restricting attention to board
positions in which the minimal depth among W -moves exceeds fifty. These are positions in
which it is a priori unlikely that players can accurately discriminate between moves according
to their depth. Reassuringly, the results from this smaller sample are qualitatively equivalent
to those in the main text.

D.2. Controlling for Time Pressure

Since the timing of decisions is endogenous, we do not control for it in our main analysis. We
do, however, obtain qualitatively equivalent findings when we account for it. To show this,
we replicate Tables 3 and 4 in the main text, controlling for time pressure. Specifically, we
control for the number of seconds per move the player has left if she takes the shortest path
to mate, while her opponent holds out as long as possible. As the results in Appendix Tables
AT.3–AT.4 illustrate, our findings remain qualitatively unchanged.

D.3. Restricting Attention to First Move in Series

One potential concern with the results in the main text is serial-dependence in the decisions
of players. A player who sees a winning strategy and follows it in each subsequent move
enters our data set multiple times. To rule out that this issue is driving our main results, we
replicate Tables 3 and 4 in the text restricting attention only to the first move in a series
of moves from winning positions in a given game. If a player sees and executes a winning
strategy, then she would thus only enter our data set once per game.3 As the results in
Appendix Tables AT.5–AT.6 illustrate, our findings remain qualitatively unchanged.

3A player can enter more than once per game if she and her opponent both make mistakes, in which case
strategies would need to be recomputed.
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D.4. Replication with Data from The Week in Chess

Appendix Tables AT.7–AT.8 replicate Tables 3 and 4 in the main text, using an indepen-
dent dataset that we obtained from The Week in Chess (TWIC). TWIC is a free, weekly
publication that “rounds up the most important chess” games from the previous week (see
https://theweekinchess.com). Most of these games are played between elite players in
national and international tournaments, or chess leagues.
Our data include all games covered in TWIC between September 1994 and May 2020. In

total, we observe 536,674 decision problems in endgame positions with six or fewer pieces, one
or more legal W - and at least one D- or L-move. These decision problems contain 9,067,040
legal moves.
Besides being several orders of magnitude smaller, the most important difference between

the TWIC and Lichess data is that the former admit much less variation in players’ skill. Chess
players in high-profile tournaments tend to be better than the average experienced player on
Lichess. This fact is reflected in a much lower frequency of mistakes in the TWIC data. Since
tournament-level players almost never choose L-moves in winning positions, our estimates
of the effect of object complexity on the choice frequency of L-moves are economically and
statistically indistinguishable from zero. Nonetheless, out of the 20 estimates in Appendix
Tables AT.7–AT.8, 16 are statistically highly significant and have the same sign as their
counterparts in the main text. The remaining 4 estimates can only be imprecisely estimated,
so that their 95%-confidence intervals include both positive and negative values.

Appendix E: Experimental Instructions and Further Details

As explained in the main text, the experiment took place over the four-week period starting
April 7, 2023. We recruited participants via targeted ads on Facebook, Twitter, and Reddit,
as well as through forum posts on lichess.org and chess.com. All ads and forum posts
contained a link that directed participants to a website that we had custom-built for the
experiment using oTree (Chen et al. 2016).
After consenting to participate in the experiment, we required all subjects to provide their

Lichess and Chess.com usernames, which the website verified in real time by querying the APIs
of the respective platforms.4 Since we wanted to recruit only online-chess players, providing a
valid username to at least of one these platforms was a precondition for participation. Out of
the 3,966 subjects that met this condition, 584 provided a Lichess username, 2,471 submitted
a Chess.com username, and 911 subjects provided both.
The experiment consisted of five stages: 1. Consent; 2. Username Verification; 3. Instructions;

4These APIs queries verified the existence of the usernames and retrieved basic information about users’
activity on the platform, including their strength ratings.
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4. Experimental Task (25 rounds); 5. Background Questionnaire (8 questions).
The actual experimental task consisted of twenty-five rounds. In each round, participants

were shown a chess board with a randomly sampled endgame position in which one legal
move was highlighted (cf. Figure 6 in the main text). They were then asked to indicate
whether the highlighted move is a winning, drawing, or losing move. These types had been
carefully defined in the instructions; though this may not have been strictly necessary, given
that about 78% of subjects indicated that they had already known about winning, drawing,
and losing moves before participating in the experiment. The instructions had also explicitly
stated that moves of each type were a priori equally likely to be shown.
The population of moves that could in principle be shown to subjects had been extracted

from a random subset of all legal moves in 4,196 representative endgame positions from our
observational Lichess data. In total, we extracted 30,000 randomly chosen moves subject
to their depth and width not exceeding 50 and 18, which corresponds to about the 95th
percentiles of the respective marginal distributions. We then constructed sampling weights
to achieve that W -, D-, and L-moves would be shown to participants with approximately
the same probability, subject to the depth of the W - and L-moves that were shown being
approximately uniformly distributed between zero and fifty.
Subjects had between five and forty-five seconds to submit their evaluation. The time limit

was randomized and distributed uniformly and i.i.d. across rounds.
Subjects earned one virtual lottery ticket for every move they correctly evaluated. After

the experiment, all lottery tickets were entered into a raffle for twenty $100 Amazon gift
certificates.
The median participant earned 15 tickets and spent slightly less than 9 minutes on the

experiment. About 22% of participants did not finish the experiment. That is, they did not
submit evaluations for all 25 moves or the evaluations that were submitted did not pass basic
attention checks.5,6

Appendix Table AT.9 presents descriptive statistics for our experimental data. On the next
page, we reproduce the text that was shown to participants during the experiment, with
horizontal lines demarcating screens.

5An evaluation fails our attention checks if (i) the subject submits her answer less than two seconds after
being shown the board, or (ii) if she lets the time run out for this and all subsequent evaluation tasks.

6The numbers above do not include individuals that clicked on our ads but did not proceed past the consent
screen.
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Experimental Screens

Research Survey

Research Study: Understanding Strategic Reasoning under Time Pressure (STU00219176)
Principal Investigators: Dr. Yuval Salant; Dr. Jörg Spenkuch
Supported By: This research is funded by Northwestern University.

Welcome to our survey of chess players! The purpose of this study is to better understand how chess
players reason under time pressure. We are very grateful for your help!

To take this survey you must be a registered user of either Lichess.org or Chess.com. Below we
provide additional information on this study in order to help you decide whether you’d like to
participate.

To begin our survey, you need to provide your consent by pressing the PROCEED button at the
bottom of this page.

What should I expect?
Your participation is voluntary. If you choose to participate, you will first be asked to provide your
username on Lichess.org and/or Chess.com. We will then ask you to rate several chess moves in
endgame positions, followed by a handful of questions about your age, gender, and experience playing
chess. We estimate that it will take about 10-15 minutes to complete the survey.

Will I be paid?
We will reward your participation in this survey with a chance to win one of twenty $100 gift
certificates to Amazon.com. Everyone who successfully completes the survey becomes eligible to
participate in the raffle for these gift certificates. Your chances of winning will depend on how many
other users complete the survey and on how well you evaluate the endgame moves that we will show
you. The winners of the gift certificates will be contacted via the messaging function on Lichess and
Chess.com by May 31, 2023.

Are there any risks?
We foresee little risk from participating in this survey, and we do not guarantee that you will receive
any benefits beyond a chance to win an Amazon gift certificate.

How will my information be used?
The information collected through this survey will be exclusively used for research purposes. All data
will be handled and stored in accordance with Northwestern University policy. There is minimal risk
that participants might be identified from the information provided. The research team will take
extensive precautions to keep all data secure in order to protect confidentiality. As part of this effort,
your actual identity will remain unknown to the researchers conducting this study. The results of
this research may be published, but only in anonymized form.
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Who can I talk to?
If you have questions, concerns, or complaints, you can contact the Principal Investigators at
chessresearch@u.northwestern.edu. This research has been reviewed and approved by an Institutional
Review Board (IRB) — an IRB is a committee that protects the rights of people who participate
in research studies. You may contact the IRB by phone at +1 (312) 503-9338 or by email at
irb@northwestern.edu if:

• Your questions, concerns, or complaints are not being answered by the research team.

• You cannot reach the research team.

• You want to talk to someone besides the research team.

• You have questions about your rights as a research participant.

• You want to get information or provide input about this research.

By proceeding to the next screen, you are consenting to participate in the survey.

Lichess / Chess.com Username

Are you a registered user of Lichess.org? If so, please enter your username. If not, leave the textbox
below empty.

Are you a registered user of Chess.com? If so, please enter your username. If not, leave the textbox
below empty.

Please do not enter your real name, but your username on Lichess.org and/or Chess.com (e.g.,
chessmaven19). Please enter both usernames if you play on both platforms. If you do not enter at
least one valid userhandle, then we won’t be able to contact you if you win one of the $100 gift
certificates.

Evaluating Chess Moves: Instructions

We are interested in better understanding how chess players evaluate moves under time pressure.
To this end, we will show you 25 legal chess moves in endgame positions. You are being asked to
evaluate them.

When evaluating a move, you can choose between the following three possibilities:

• Winning move = If the current player makes this move, then the current player will win
under subsequent perfect play.

9



• Losing move = If the current player makes this move, then the opponent will win under
subsequent perfect play.

• Drawing move = If the current player makes this move, then perfect play by both players
will result in a draw.

We will compare your evaluations to the respective moves’ actual theoretical values (i.e., Winning,
Losing, or Drawing), and you will earn one virtual lottery ticket for every move that you correctly
evaluate. Pooling all lottery tickets earned by the participants in this survey, we will randomly draw 20
tickets and award $100 Amazon gift certificates to the respective owners. Thus, your chances of winning
a gift certificate depend directly on how many evaluations you get right.

For every move you see, this website randomly determines how much time you have to submit your
evaluation. For some evaluations, you might have as little as 5 seconds, whereas for others you may
take up to 45 seconds.

To be clear, we are not asking you to evaluate whether a particular move is the best move in the
given board position. We are asking you to determine whether the move is a Winning, Drawing, or
Losing move, as defined above.

Please proceed to the next screen to see an example of what exactly you’re being asked to do.

Evaluating Chess Moves: Example

The move that is highlighted in the screenshot above is theoretically a Losing move. If you were
asked to evaluate this move, you would earn one lottery ticket if you chose the "Losing" option and
pressed the "Next" button before the clock at the top of the screen ticks down to zero. You would
not earn a lottery ticket if you chose either the "Winning" or "Drawing" options, or if you didn’t
submit your answer in time. Once the clock expires, you will automatically be moved to the next
screen.
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Note

The chess boards that you’re about to see have been chosen from a large number of positions that
were actually played in various online games.

We have picked these boards such that you can expect to see Winning, Drawing, and
Losing moves in roughly equal proportions.

To see the first move, please press "Next".

Endgame Position 1 of 25

Time Left:

Castling: En Passant: Halfmove Clock:

Is the move above a winning, drawing, or losing move?

• Winning

• Drawing

• Losing

...
...

...

...
...

...

11



Results

Round Your Guess Correct Answer

1 Winning Winning

2 Drawing Losing

...
...

...

...
...

...

...
...

...

25 Losing Losing

Based on these results, you have earned lottery tickets.

Please tell us a little bit about yourself.

How old are you?
(drop-down list)

What is your gender?

• Male

• Female

• Other

• Prefer No to Say

Where do you live?
(drop-down list)

We will now ask you some questions about your experience playing chess.

Approximately how long have you been playing chess?
(drop-down list)

How often do you typically play over-the-board chess, i.e., in real life?
(drop-down list)
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How often do you typically play online chess?
(drop-down list)

Thank you for your participation!

Thank you for contributing to our research. Before you go, we have just two more questions that
will help us improve this survey.

Before taking our survey, did you already know about Winning, Drawing, and Losing moves in
endgame positions?

• Yes

• No

Did you feel that the instructions you received about evaluating endgame moves were clear?

• Yes

• No

If you have any other comments, please enter them below. We would be very interested in hearing
your feedback.

Goodbye

This completes our survey. Your answers have been recorded. Thank you for your help!

We’ll contact you via Lichess.com and/or Chess.com if you end up winning an Amazon gift certificate.

13



Appendix Tables

Appendix Table AT.1: Replication of Table 3, Board Positions with High Minimal Depth to Mate

Panel A: Based on Depth
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Depth (÷ 100) –0.282 0.017 –0.207 0.023
(0.003) (0.002) (0.006) (0.006)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 23.970 0.569 21.319 0.902

R2 0.433 0.334 0.563 0.398
N 92,066,019 39,282,812 22,051,140 9,811,399

Panel B: Based on Width
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Width (÷ 100) –0.419 0.003 –1.076 0.007
(0.006) (0.001) (0.009) (0.002)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 23.970 0.569 21.319 0.902

R2 0.484 0.388 0.569 0.440
N 92,066,019 39,282,812 22,051,140 9,811,399

Notes: See Table 3 in the main text. The only difference between this table and that in the text is that results above restrict
attention to board configurations in which the minimal depth among W -moves is at least 50.
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Appendix Table AT.2: Replication of Table 4, Board Positions with High Minimal Depth to Mate

Panel A: Based on Depth
Probability of Choosing Other W -Move

(1A) (2A) (3A) (4A) (5A) (6A)

Depth (÷ 100) 0.911 1.328 0.259 0.911 0.946 1.075
(0.007) (0.023) (0.007) (0.007) (0.009) (0.044)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 70.629 85.755 79.501 70.629 56.506 72.482

R2 0.509 0.417 0.516 0.509 0.308 0.573
N 89,336,853 21,796,372 72,891,541 89,336,853 5,832,993 3,048,972

Panel B: Based on Width
Probability of Choosing Other W -Move

(1B) (2B) (3B) (4B) (5B) (6B)

Width (÷ 100) 0.717 1.106 0.494 0.098 0.309 0.821
(0.005) (0.009) (0.008) (0.020) (0.012) (0.076)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 70.629 85.755 78.899 59.955 56.506 72.482

R2 0.549 0.447 0.584 0.521 0.389 0.603
N 89,336,853 21,796,372 69,705,830 13,401,877 5,832,993 3,048,972

Notes: See Table 4 in the main text. The only difference between this table and that in the text is that results above restrict
attention to board configurations in which the minimal depth among W -moves is at least 50.
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Appendix Table AT.3: Replication of Table 3, Controlling for Time Pressure

Panel A: Based on Depth
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Depth (÷ 100) –0.775 0.014 –0.226 0.035
(0.002) (0.001) (0.003) (0.002)

Seconds Left per Move 0.001 –0.001 0.002 –0.001
(0.000) (0.000) (0.000) (0.000)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 16.693 0.475 20.481 0.660

R2 0.494 0.233 0.663 0.234
N 3,238,254,715 276,991,030 372,397,046 104,556,541

Panel B: Based on Width
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Width (÷ 100) –0.335 0.008 –0.746 0.031
(0.002) (0.001) (0.003) (0.002)

Seconds Left per Move 0.000 –0.001 0.002 –0.001
(0.000) (0.000) (0.000) (0.000)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 16.693 0.475 20.481 0.660

R2 0.555 0.285 0.693 0.286
N 3,238,254,715 276,991,030 372,397,046 104,556,541

Notes: See Table 3 in the main text. The only difference between this table and that in the text is that results above control
for time pressure, i.e., the number of seconds per move the player has left she follows the shortest W -path.
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Appendix Table AT.4: Replication of Table 4, Controlling for Time Pressure

Panel A: Based on Depth
Probability of Choosing Other W -Move

(1A) (2A) (3A) (4A) (5A) (6A)

Depth (÷ 100) 1.499 1.526 0.324 0.917 1.638 1.802
(0.003) (0.010) (0.002) (0.007) (0.004) (0.028)

Seconds Left per Move 0.002 0.001 0.002 0.146 0.001 –0.000
(0.000) (0.000) (0.000) (0.006) (0.000) (0.000)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 85.649 88.956 92.335 70.601 67.824 86.057

R2 0.408 0.448 0.320 0.511 0.331 0.459
N 3,217,115,234368,886,629 2,797,083,66883,387,752 138,639,890 56,772,033

Panel B: Based on Width
Probability of Choosing Other W -Move

(1B) (2B) (3B) (4B) (5B) (6B)

Width (÷ 100) 0.546 0.808 0.410 0.112 0.165 0.714
(0.001) (0.003) (0.002) (0.021) (0.003) (0.012)

Seconds Left per Move 0.002 0.001 0.002 0.143 0.011 0.000
(0.000) (0.000) (0.000) (0.011) (0.001) (0.000)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 85.649 88.956 90.695 59.929 67.824 86.057

R2 0.469 0.485 0.443 0.523 0.460 0.510
N 3,217,115,234368,886,629 2,643,066,50012,504,657 138,639,890 56,772,033

Notes: See Table 4 in the main text. The only difference between this table and that in the text is that results above control
for time pressure, i.e., the number of seconds per move the player has left she follows the shortest W -path.
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Appendix Table AT.5: Replication of Table 3, First Move in Series Only

Panel A: Based on Depth
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Depth (÷ 100) –0.452 0.023 –0.034 0.070
(0.002) (0.001) (0.004) (0.003)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 33.899 0.938 36.255 1.509

R2 0.525 0.248 0.722 0.270
N 223,801,960 75,288,017 59,250,718 29,795,003

Panel B: Based on Width
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Width (÷ 100) –0.158 0.013 –0.712 0.043
(0.005) (0.002) (0.008) (0.003)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 33.899 0.938 36.255 1.509

R2 0.593 0.314 0.759 0.333
N 223,801,960 75,288,017 59,250,718 29,795,003

Notes: See Table 3 in the main text. The only difference between this table and that in the text is that results above restrict
attention to only the very first move in a series of moves from winning positions.
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Appendix Table AT.6: Replication of Table 4, First Move in Series Only

Panel A: Based on Depth
Probability of Choosing Other W -Move

(1A) (2A) (3A) (4A) (5A) (6A)

Depth (÷ 100) 1.059 1.453 0.243 0.790 1.101 1.244
(0.004) (0.016) (0.003) (0.012) (0.005) (0.026)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 76.431 85.180 87.770 62.998 63.249 76.812

R2 0.512 0.504 0.515 0.603 0.360 0.556
N 214,042,424 57,226,280 180,924,795 15,344,997 20,229,107 5,328,759

Panel B: Based on Width
Probability of Choosing Other W -Move

(1B) (2B) (3B) (4B) (5B) (6B)

Width (÷ 100) 0.439 0.865 0.321 0.130 0.154 0.661
(0.004) (0.008) (0.005) (0.086) (0.007) (0.067)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 76.431 85.180 84.758 52.085 63.249 76.812

R2 0.579 0.534 0.611 0.606 0.478 0.594
N 214,042,424 57,226,280 172,871,972 2,464,839 20,229,107 5,328,759

Notes: See Table 4 in the main text. The only difference between this table and that in the text is that results above restrict
attention to only the very first move in a series of moves from winning positions.
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Appendix Table AT.7: Replication of Table 3, TWIC Data

Panel A: Based on Depth
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Depth (÷ 100) –0.911 0.002 –0.987 –0.000
(0.020) (0.006) (0.109) (0.001)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 26.542 0.077 23.835 0.150

R2 0.645 0.422 0.582 0.367
N 5,132,343 1,177,248 853,980 296,615

Panel B: Based on Width
Probability of Choosing Move

W -Moves L-Moves W -Moves L-Moves

Width (÷ 100) –0.511 –0.002 –0.566 –0.009
(0.018) (0.002) (0.032) (0.005)

Fixed Effects:
Player Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes

Board Configurations All All No D-Moves No D-Moves

Mean of LHS Variable (%) 26.542 0.077 23.835 0.150

R2 0.679 0.357 0.504 0.337
N 5,132,343 1,177,248 853,980 296,615

Notes: See Table 3 in the main text. The only difference between this table and that in the text is that results above are based
on data from The Week in Chess.
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Appendix Table AT.8: Replication of Table 4, TWIC Data

Panel A: Based on Depth
Probability of Choosing Other W -Move

(1A) (2A) (3A) (4A) (5A) (6A)

Depth (÷ 100) 2.485 3.149 0.410 1.513 2.663 2.506
(0.061) (0.309) (0.032) (0.099) (0.081) (0.063)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 81.576 87.459 93.359 74.058 68.824 81.525

R2 0.539 0.473 0.511 0.599 0.479 0.539
N 5,064,773 847,303 4,311,578 958,023 339,083 4,583,088

Panel B: Based on Width
Probability of Choosing Other W -Move

(1B) (2B) (3B) (4B) (5B) (6B)

Width (÷ 100) 0.554 0.566 0.418 1.850 0.851 0.554
(0.019) (0.032) (0.019) (0.522) (0.121) (0.019)

Fixed Effects:
Player Yes Yes Yes Yes Yes Yes
Number of W - × D- × L-Moves
× Depth of Other Moves × Own Depth Yes Yes Yes Yes Yes Yes

Sample Full No
D-Moves

Excl.
Simplest
Move

High
Complexity

Small
Choice
Sets

Long
Time

Controls

Mean of LHS Variable (%) 81.576 87.459 88.375 65.657 68.824 81.525

R2 0.577 0.455 0.585 0.606 0.583 0.576
N 5,064,773 847,303 4,070,864 147,925 339,083 4,583,088

Notes: See Table 4 in the main text. The only difference between this table and that in the text is that results above are based
on data from The Week in Chess.
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Appendix Table AT.9: Summary Statistics, Experimental Data

Percentile

Variable Mean SD 25% 50% 75% 95% N

A. Subject Characteristics
Registration:

Lichess User 0.38 0.48 3,966
Chess.com User 0.85 0.35 3,966

Age (in Years):
≤ 20 0.44 0.50 3,112
21 – 30 0.41 0.49 3,112
31 – 40 0.11 0.31 3,112
41 – 50 0.02 0.14 3,112
51 – 60 0.01 0.09 3,112
> 60 0.01 0.10 3,112

Gender:
Male 0.92 0.27 3,112
Female 0.04 0.19 3,112
Other and Prefer Not to Say 0.05 0.21 3,112

Region:
North America 0.51 0.50 3,112
Central and South America 0.04 0.19 3,112
Western Europe 0.21 0.41 3,112
Eastern Europe 0.07 0.26 3,112
East Asia 0.02 0.15 3,112
South Asia 0.05 0.22 3,112
Australia and Oceania 0.03 0.17 3,112
Africa 0.02 0.14 3,112
Other 0.05 0.21 3,112

Experience Playing Chess (in Years):
< 1 0.23 0.42 3,101
1 – 2 0.29 0.45 3,101
3 – 5 0.20 0.40 3,101
6 – 10 0.10 0.30 3,101
> 10 0.18 0.38 3,101

Frequency Playing Online Chess:
Daily 0.49 0.50 3,101
Weekly 0.34 0.47 3,101
Monthly 0.12 0.32 3,101
Almost Never 0.06 0.23 3,101
Never 0.00 0.06 3,101

Frequency Playing Over-the-Board Chess:
Daily 0.03 0.16 3,101
Weekly 0.16 0.37 3,101
Monthly 0.22 0.42 3,101
Almost Never 0.46 0.50 3,101
Never 0.13 0.34 3,101

Understanding of Instructions:
Already Knew about Move Types 0.78 0.42 3,076
Instructions Were Clear 0.85 0.36 3,075
Didn’t Know about Move Types and Instructions Weren’t Clear 0.05 0.22 3,071

B. Move Evaluations
Subject Level:

Evaluations Completed 21.95 6.94 25 25 25 25 3,966
Tickets Earned 13.85 5.91 11 15 18 22 3,966

Move-Level Performance:
Correctly Evaluated 0.63 0.48 87,060
Response Time (in Seconds) 11.25 6.53 7 10 14 24 87,059

C. Move Characteristics
True Type:

Winning 0.34 0.47 87,060
Drawing 0.33 0.47 87,060
Losing 0.34 0.47 87,060

Complexity:
Depth 25.52 14.45 13 26 38 48 58,470
Width 9.00 5.41 4 8 14 18 87,060

Notes: Table displays summary statistics for selected variables in the data from our experiment.
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